Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease.
نویسندگان
چکیده
The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5-15 kcal/mol, while losing only 1-3 kcal/mol in total binding free energy for any of six FDA-approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wild-type protease and another drug-resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug-resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design.
منابع مشابه
Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملDrug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs
Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...
متن کاملConductometric Study of the Thermodynamics of Micellization of Sodium dodecylsulfate (SDS) in the Presence of Some Aromatic Ammonium Salts
The effect of three organic aromatic salts - Phenyltrimethylammonium (PhTMAB), benzyltrimethylammonium (BzTMAB) and benzyltrimethylammonium (BzTEAB) bromides - on the micellization of sodium dodecylsulfate has been investigated by conductometric method. The critical micelle concentration (CMC) values were found to decrease with increase in the concentration of the aromatic ammonium salts. Therm...
متن کاملDrug Resistance Mutations Alter Dynamics of Inhibitor-Bound HIV-1 Protease
Under the selective pressure of therapy, HIV-1 protease mutants resistant to inhibitors evolve to confer drug resistance. Such mutations can impact both the dynamics and structures of the bound and unbound forms of the enzyme. Flap+ is a multidrug-resistant variant of HIV-1 protease with a combination of primary and secondary resistance mutations (L10I, G48V, I54V, V82A) and a strikingly altere...
متن کاملDrug-Resistant HIV-1 RT Gene Mutations in Patients under Treatment with Antiretroviral Drugs (HAART) in Iran
Abstract Background and Objective: Highly Active Antiretroviral Therapy (HAART) can effectively prevent the progression of HIV-1 replication and increase life expectancy. There are numerous causes of treatment failure and the leading one is drug resistance. Thus, we aimed to determine the HIV RT gene drug resistance mutations in patients treated with antiretroviral medications. Material...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS chemical biology
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2012